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Abstract-The Green's functions of semi-infinite, transversally vibrating homogeneous beams and
isotropic resp. special orthotropic plates, which are clamped along the boundary, are represented
by definite integrals. Some of these are evaluated by numerical procedures.

I. INTRODUCfION

In the classical books of Todhunter and Pearson (1893) and of Girkmann (1963), the
solutions of several initial-boundary value problems for semi-infinite bars and plates are
represented by formulae containing tabulated functions. The boundary conditions pre
scribed in most of these problems correspond to freely supported boundaries. If the trans
versal deflection is denoted by w, then this amounts to prescribing the values of wand of
02W / ox2 along the straight border x = O. Since the derivation order in the two boundary
conditions differs by 2, these problems are completely reducible to boundary value problems
for second-order differential equations. Under these circumstances also the method of
images applies.

However, the classical Dirichlet problem for fourth-order equations with respect to
the space variables demands, as given data, the values of wand of Ow /ax along the border
x = O. Physically, this corresponds to a clamped boundary. Whereas the static cases of
semi-infinite clamped bars and plates were solved explicitly (with the exception of clamped
embedded plates), the dynamical versions of these problems remained open.

The initial-boundary value problem (mathematically: mixed Cauchy-Dirichlet prob
lem) of a semi-infinite clamped bar has already been solved by determining the Green's
function (Ortner, 1978). In the present paper, we intend to give explicit formulae for the
Green's functions of the following semi-infinite clamped vibrating bars, resp. plates:

(i) elastically supported bar: Section 2.3,
(ii) special orthotropic plate: Section 3.2,

(iii) isotropic plate: Sections 4.2, 4.3.

As a corollary to the construction of the Green's function in (iii), we also deduce the
Green's function of the semi-infinite clamped elastically supported static isotropic plate in
Section 4.4. Furthermore, in Section 2.5, we give a detailed numerical analysis of the integral
which represents the Green's function corresponding to (i) in the special case when there is
no elastic bedding. Also, the definite integral which corresponds to (ii) is evaluated by
numerical procedures.

The basic mathematical tools are the classical integral transformations, Le. the Laplace
transform with respect to the time variable and the Fourier transform with respect to one
of the space variables. Moreover, we apply the theory of asymptotic expansions to the
evaluation of certain definite integrals. The mathematical treatment of the existence and

tThe authors are indebted to Dip!. Ing. Arthur Wagner for programming the numerical evaluation of the
oscillating improper integral given in Section 3.2, which represents the Green's function of the clamped orthotropic
plate.
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the uniqueness of the Green's function of these (mixed) initial-boundary value problems
has been left out of consideration.

2. THE TRANSVERSE VIBRAnONS OF AN ELASTlCALLY SUPPORTED, HOMOGENEOUS BEAM
WHICH IS CLAMPED AT ONE END AND INFINITELY LONG IN ONE DIRECTION

2.1. Statement of the problem
The displacements w(x, t) along a beam (of constant cross-section) which is supported

by an elastic medium and loaded along its principal axis satisfy the differential equation
(Parkus, 1966, Chapter XI)

(1)

Here, c2 = EJ /pF, E = Young's modulus, J = moment of inertia of the cross-section,
p = density, F = area of the cross-section, k 2 = b / EJ, b = bedding coefficient = modulus
of foundation, q = external load.

We consider a semi-infinite beam, which is clamped at the end x = 0, i.e
w(O, t) = (ow! iJx)(O, t) = 0, and of infinite extension in the positive x-direction. We assume
that w(x, t) =°for t < 0. The Green's function (also called the influence function or
singularity function) G~(x, t), e > 0, represents the displacements along this beam produced
by a concentrated instantaneous force at the point x = ~ at the time t = 0, which amounts
to putting q(x, t) = EJc>(x-e)@c>(t), c> being Dirac's function.

2.2. Application of the Laplace transform
The Laplace transform g~ of G~ with respect to t is given by

g; (x,p) = .:eG~(x, t) = L~ e- pt G;(x, t) dt.

Theng~ is the Green's function of the ordinary differential operator (d 4 jdx4
) + (p2jc2)+k2

in the interval (0, 00). The function g; fulfills:

furthermore, g; has to be bounded and twice continuously differentiable in x = e and:

By these requirements, g~ is uniquely determined, and we obtain:

g; = 8~3 {e-·lx-~I [cos lX(x-e)+sin lXix-ell

+e-·(XH ) [cos lX(x+~)-sin lX(x+e)-2 cos IX(X-O]},
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2.3. Inversion of the Laplace transform
In order to invert the Laplace transform, we make use of the formula

(cf. Colombo and Lavoine, 1972, p. 93). Since
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[see ?berhettinger and Badii, 1973, p. 258, fo~ula (5.87);. Y(1 denotes the Heavis~de

function], we are able to compute !t'-lg~ by settmgz = «(I ±l)!v'2)lx±~1 and separatmg
the real and imaginary parts. This yields:

2.4. The fundamental solution
From the above formula for G{, we can easily deduce a fundamental solution E of the

operator

Physically, E describes the displacements of an infinite beam, supported by an elastic
medium andacted upon byaconcentrated,instantaneousforce,Le.p(o)E = J == <5(X)@b(t).
We can calculate E from G{ by shifting the boundary to infinity:

(To obtain this equation, the Riemann-Lebesgue Lemma has to be applied.) E is unique
as a fundamental solution of the quasi-hyperbolic operator P(C) if the relatively weak
condition

is imposed. Here [1" denotes the space of temperate distributions, cf. Schwartz (1966). For
a more extensive treatment of existence, uniqueness and construction of fundamental
solutions, refer to Ortner (1980, 1987).

2.5. The limiting case k = 0
In the case where k =0, we have to substitute the factor Jo(kJc2t 2

- T
2

) in the formula
ofSection 2.3 by the constant 1. The resulting integral was given for the first time by Ortner
(1978). In this paper we discuss also, in detail, the representation of the solution of eqn (1)
in 2.1 [for k =0 and subjected to the boundary conditions w(O, t) = I(t),
(ow/ox)(O,t)=m(t), and the initial data which are given by w(x,O)=g(x) and
(ow/ot)(x,O) =h(x)] by means of the Green's function G{. Note that the computation of
G?, given in Ortner (1978) depends on the evaluation of the definite integral
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r' f(ax)f(bx) cos Xl dx, f(x) = sin x-cos x+e-"

which can alternatively be found in Ortner (1982).
Next, let us remark on the numerical evaluation of G:. in the special case where k = O.

Putting the dimensionless variables u = x j~, s = ct; ~ 1, (J ~ ct j r, g(u, s) = G;/ c~ we obtain
from section 2.3 :

9 - rx
{sin [(U-l)l(J + ::] -sin [(u+ 1)1(J - ::]

- 2fi JI 4s 4 4s 4

h (ua) [(U 2-1)a]} da
-....; 2 exp - 2s cos 4s (J3/2'

Repeated partial integration yields the following asymptotic expansion (cf. Erdelyi, 1956):

where a = (u+ 1)2/4s, b = (u-1)2/4s, d = i(u+i)2j4s, which is valid for a, b, d being
large. It is recommended that this expansion is broken before N attains the order of a, b,
Idl, respectively. In fact, by Stirling's formula, we obtain

(2n+ I)!! = 2f(n+ 1) ~ 2311 j;(n+ f'r I

2nlJ.n+ I filJ.n+ I lJ.e} ,

and the last expression reaches its minimum approximately at n = IJ. for a large value of IJ.,

say greater than 10.
For small values of a, band d, 9 is best computed by using its power series expansion

in a, b, d. For physical reasons, limt _ oo G~(x, t) = 0 holds. From this, we infer that 9 may
be written in the equivalent form

(This latter formula can also be deduced rigorously by showing that the above integral,
extended from 0 to 00, vanishes.) Upon expanding the integrand in a power series in a, we
obtain:

9 = .;; f I 1) {( - 1)f(n-ll/2Jan - (_1)[n/ 2Jbn+2 Re dn}.
2j2;n~2n!(n

Here, [IJ.] stands for the largest integer ~ IJ.. This formula is adapted for numerical evaluation
if the values of a, band d do not exceed say 30 and if one uses at least 15 relevant digits in
numerical processing.

Finally, let us consider the case ofa small value of b, i.e. x near e, combined with large
values ofa and d, which means small times. Then the terms of the integral containing a and
d are treated with the aid ofan asymptotic expansion as above, whereas the term containing
b is transformed into a power series using the formula
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g

Fig. I. Green's function of a semi-infinite one-sided clamped beam: initial phase of the wave.
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IX sin (bU+~) ud)~2 = J2- f [sin (bU+~)-v~J ud)u:.

In order to convey an idea of the shape of the beam during its vibration, we have calculated,
utilizing the procedure outlined above, some deflection curves, which show the rapid
oscillations in the beginning of the movement as well as the more regular fading-out wave
later on (Figs I, 2). Furthermore, we have determined the point and the time of maximal
displacement: u = 1.61, S =0.52, 9max =0.256.

g

Fig. 2. Green's function of a semi-infinite one-sided clamped beam: fading-out wave.
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3. THE TRANSVERSE VIBRATIONS OF A SEMI-INFINITE, ORTHOTROPIC PLATE
CLAMPED ALONG ITS BOUNDARY

3.1. Statement ofthe problem
Let us now examine the vertical displacements w(x,y, t) over a thin special orthotropic

plate due to the load p(x,y, t). w fulfills the differential equation

(2)

Here c2 = K/cp, h = thickness, p = density, K = Eh3 /12(t _v2), E = Young's modulus,
v:;:::; Poisson's ratio (cf. Nowacki, 1974, p. 348, eqn (16)]. We shall consider a semi-infinite
plate, which is to occupy the region - 00 < y < 00, 0 ~ x < 00 and is clamped along its
boundary x == 0, i.e. w(O,y, t):;:::; (ow/ax)(O,y, t) = O. We proceed to determine the Green's
function H~(x,y, t), e> 0, which, in analogy with Section 2, solves eqn (2) with right-hand
sidepjK = ~(x-~)®o(y)®o(t) and satisfies the above boundary conditions.

3.2. Integralformula representIng H~

Applying the Fourier transformation Jw(x,y, t) e-iY~ dy with respect to y, eqn (2)
assumes the form of the eqn (1) with k = ,,2. Denoting by G~(x,y;k) the Green's function
determined in the previous section we conclude, by inverting the Fourier transform, that

1 i'"He (x,y, t) :;:::; - Ge(x, t; '1 2
) cos (ytl) dtl·

:n: 0

On account of the formula (Oberhettinger, 1957, p. 71)

we eventually find:

This formula has been evaluated with the aid of Simpson's rule. The individual integration
stepsizes are adjusted to full wavelengths of the respective "main terms" of the integrand.
If integration starts from a favourable intermediate .-value between 0 and ct towards 0, the
oscillation frequency of the three trigonometric terms increases indefinitely, whereas in the
positive .-direction, there is an indefinite increase of the oscillation frequency of the Bessel
terms. These predominantly osciUating terms are denoted as "main terms" and their multi·
plying factors are called "side tenus". Intermediate zeros of the side terms additionally
limit the integration step sizes on account of improved preciseness. In the case where the
arguments of the trigonometric terms weakly depend on • (e.g. x -I> ~). the number of the
subdivisions for the integration towards 0 has to be increased. Three-dimensional pictures
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Fig. 3. Green's function of a semi-infinite one-sided clamped orthotropic plate for s = ct/,2 = 0.2
in the domain 0,;;; u = .rR ,;;; 5, -3';;; v = 1/;'''; 3. Maximum deflection hma• = 0.170.
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of the deformed plate at some specific physical times are given in Figs 3, 4, 5, whereas Figs
6 and 7 show families of deformation curves for different times. Therein we use the
dimensionless variables u = x/c., v = y/t., s = ctlt. 2

, h = H~/c.

3.3. The fundamental solution
By shifting the boundary to infinity in the same way as in Section 2.4 we easily deduce,

from the formula in Section 3.2, a fundamental solution E of the operator
()'tlox4+04loy4+c- 2•02/0t2:

Fig. 4. Green's function of a semi-infinite one-sided clamped orthotl'Opic plate for s =ct/ ~2 ... O.S
in the domain 0,;;; u = .../?-,;;; 5, -5';;; v = y/;,';;; 5. Maximum deflection 4- = 0.139.

W 21:24'



244

E = elyl Y(t)

16fi
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1<'/ { ( \-'2 )2 ( 1'2 )2}1_ 1,4 - -11 ~ ------
I ~.,., I .,... .,

o 8/c-t--r- 8 /cr-r-
" v

Fig. 5. Green's function of a semi-infinite one-sided clamped orthotropic plate for s '"" c/ I~2 = 1.0
in the domain 0::;;; u = x/~::;;; 5, -5::;;; ~. =y/~ ::;;; 5. Maximum deflection hm~. = 0.093.

:-0.10

Fig. 6. Green's function of a semi-infinite one-sided clamped orthotropic plate: deflection of the
midline y = 0 at the times s '"" ct / ,2 = 0.2, 0.5, 1.0.
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u=J.

-O,J.O

Fig. 7. Green's function of a semi-infinite one-sided clamped orthotropic plate: deflection of the
line x == eat the times s = ctIe = 0.2, 0.5, 1.0.

E is the unique fundamental solution of the above operator satisfying the condition
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(Ortner, 1989). Let us remark that E can be given a somewhat more symmetric appearance
with respect to x andy if the Fourier transform is applied to both spatial variables x, y, thus
starting from the fundamental solution (e Y(t)/a.) sin (a.et) ofthe operatorcx2+e- 2. (d 2/dt 2

).

One derives:

where C and S denote the Fresnel integrals and

4. THE TRANSVERSE VIBRATIONS OF A SEMI-INFINITE, ISOTROPIC PLATE
CLAMPED ALONG ITS BOUNDARY

4.1, Statement of the problem
Instead of the special orthotropic plate which corresponds to eqn (2) in Section 3, we

consider here the deformation u of an isotropic plate. It is governed by the equation

(3)

[cf. Nowacki, 1974, p. 291, eqn (31)]. We use the same coordinate system and prescribe the
same boundary conditions as in Section 3. F == F~(x,y, t) denotes the Green's function, i.e.
F solves eqn (3) with piK = «5(x-e)@«5(y)@«5(t), F(O,y, t) = (oFlox)(O,y, t):= 0, F = 0
for t < O.
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4.2. Application of the Fourier-Laplace transform
Upon applying, to F~, the Fourier transform with respect to y and thereafter the

Laplace transform with respect to t, we encounter a similar situation as in Section 2.2:
fe: = YY;F~ is the Green's function of the ordinary differential operator (d 4 /dx 4

)

- 2t12(d 2/dx2)+ (p2 /c2)+t14on the interval (0, 00). Exploiting the fact that fe(x,y,p) is real
and its symmetry as regards x, ~ we can assume f~ to be of the following form :

with a, bE C, dE IR. By the clamping conditions in x = 0 and by the continuity and jump
conditions in x = ~ (see Section 2.2), a, b, d are determined as a = ic/2pA.,
d = - (C 2/p2) Re A., b = -a-d. This yields:

In the first two terms of this sum, the Fourier-Laplace transformation can easily be inverted.
With the help of some known formulae (see Oberhettinger, 1957, p. 13; Oberhettinger and
Badii, 1973, p. 338), we find:

= ~y-I GKo(..fii*.j(x-e)2+y2»)

= Y(t) (' exp (_/\"_e)2+ y2) d.
21t Jo 4c..

and hence

with

F:-Z coincides with the Green's function of a vibrating isotropic plale which is simply
supported at the boundary, Le. w(O,y, t) = (02W / OX2)(0, y, t) = 0. In this case, the Green's
function can be deduced immediately from the fundamental solution E of the differential
operator, Le.

E = cY(t) (' sin (X2+y2) d. = cY(t) [1- ~Si(X2+y2)J
41t Jo 4c.. 8 1t 4ct

(cf. Ortner, 1980, p. 163) by the method of image points. In the following, we aim at giving
an integral representation for Z.
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4.3. Integral representation for the "clamping term" Z

where

To begin with, let us treat A, which is the easiest of these terms;

alA =!i'-I;p;-I (;; Re(,t e-AIXHl»).

= ~ Re (O;!i'-Ijl'-I G~ e-A1XH})).

= c
2

Re(a; Y(t) f' exp(_;<X+~)2+y2) d1:).
2 21t Jo 4cr 1:

using the formulae given in Section 4,2. Because

a it . dt e-i~/l
_ e-llI

/ f _= ---.
oa 0 t a

we obtain:

Now a partial integration yields:

A = _ c
2
Y(t)a (x+e)t cos(~)-x+e fl sin(~)d1:)
21t x Z2 4ct 4c Jo 4cr 1:

c2tY(t) (x+e)2_ y2 (Z2) cY(t)I' . (Z2)dt=. cos - +-- sm - -,
21t Z4 4ct 81t 0 4cr 1:
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In order to represent B as explicitly as possible. we make use of the convolution exchange
theorem (with respect to the Fourier and the Laplace transform) :

The carrying out of the inverse transformations as in Section 4.2 yields:
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where ,2 = x 2+ y2, p2 = ~ 2 +y2. When writing out the convolution with respect to y, t, we
obtain:

The determination of C takes a similar course to that of B. The convolution exchange
theorem yields:

C C2(X+~)Y(t) R [ ( iy2
) Pf I -2 (iz 2)J= - , e exp - -' -* z exp - .

2n- 4ct y2 4ct

Here, Z2 = (X+~)2+ y2 as above, and Pf denotes the finite part in the sense of Schwartz
(1966, p. 38). Writing out the convolution with respect to y and t furnishes:

where q2 = (x+ ~)2+ (y-P1)2, and the brackets denote evaluation in the sense of the theory
of distributions. This means

and hence

These double integrals have not yet been evaluated numerically.

4.4. Clamped semi-infinite elastically supported plate
The considerations in Section 4.2 also allow us to represent the Green's function of

the Dirichlet problem for the operator .1~+k 2 in the half-plane, which describes the static
deformation of a clamped semi-infinite elastically supported plate due to a concentrated
force. With the abbreviations of Section 4.2, the function (30- ~)(x,y) = : L;(x,y) is the
solution of this problem i.e.

Putting k = P / c we obtain
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The first two terms constitute the Green's function of an elastically supported plate which
is simply supported along the boundary. In this case, the Green's function can be deduced
from the fundamental solution, which is given in Ortner (1980, p. 159) by the method of
images. For the clamping term, we have:

where
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